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The acoustics of turbulence near sound-absorbent liners 
By JOHN E. FFOWCS WILLIAMS 
Department of Mathematics, Imperial College, London 

(Received 21 May 1971) 

Acoustic liners are often perforated screens backed by sound-absorbent material. 
Turbulence can interact with these screens to generate additional sound. The 
dynamics of the generation process is examined in this paper, where the liner is 
modelled as an infinite rigid plane boundary with a homogeneous array of 
circular orifices or rigid pistons. The acoustic properties of these boundaries are 
derived in the long wavelength limit. Small-scale turbulence is scattered by 
individual apertures into sound. Acoustically transparent surfaces support dipole 
scattering centres while more ‘opaque ’ surfaces have monopoles at  the apertures 
which convert turbulence into sound more effectively. It is shown that the pro- 
cess can be described once the response of an individual aperture in an infinite 
baffle is known. A t  low Mach numbers the screen can increase the sound radiated 
by adjacent turbulence by a factor equal to the inverse fourth power of the Mach 
number. Mean-flow effects are ignored but they are thought to increase the effects 
deduced in this preliminary study. 

1. Introduction 
Sound propagating within a vessel or duct is known to be very effectively 

absorbed when the vessel walls are treated with sound-absorbent material. This 
principle is finding increasing application in various schemes to control the noise 
of aircraft engines. There the noise often coexists with turbulence, the most com- 
mon situation being one in which sound propagates along a duct containing 
a moving stream that is bounded by a turbulent boundary layer. It is known 
(Mechel 1960; Mechel, Mertens & Schilz 1962) that additional sound can be 
generated by linings in these circumstances so that practical schemes must maxi- 
mize sound absorption simultaneously with a control of the new source 
mechanisms. This optimization is difficult while the basic mechanisms 
remain unidentified and experimental data restricted to a rather narrow 
range of parametric variation. This paper goes some way to filling this gap 
by demonstrating how turbulence can interact with small-scale features of 
an acoustic liner to generate sound rather effectively. The analysis involves 
a more precise treatment of liner properties than is usual since the essence of the 
scattering process is in the small-scale features that are ‘smeared over’ in attri- 
buting an effective surface impedance to the liner. Precise descriptions are 
impractical for the liners in commercial use, and all except the most simplified 
geometrical arrangements are likely to provide intractable analytic problems. 
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Two liner geometries of the ‘perforated screen’ type are treated in this paper. 
They are chosen primarily because they are amenable to precise analysis but also 
because they probably model very closely the turbulence-liner interaction pro- 
cesses of practical interest. The first model is one in which an infinite plane thin 
rigid screen (at z = 0)  is perforated with a homogeneous distribution of identical 
circular apertures. This screen is irradiated from one side ( z  2 0) by sound and 
turbulence, and the problem is to determine how much sound is finally radiated 
into the half space x > 0,  that sound being composed of two parts: (a)  the reflexion 
(minus absorption) of the incident sound and (b )  the newly created sound that is 
scattered from the turbulence by the screen. To the upper half space this screen 
appears as an absorbent liner, the sound radiated through the screen representing 
the absorption. The second problem concerns an identical geometry but this time 
the apertures contain plane circular pistons whose motion is related to the piston 
force by a known impedance. Again the sound radiated to the upper half space is 
determined as a function of the incident sound field, local turbulence and screen 
properties. 

Quite apart from the practical motivation of this problem there is a distinct 
theoretical interest in determining the criteria controlling the several mechanisms 
of sound generation by turbulence near an absorptive screen. It is known that if 
the surface is so ‘fine-grained’ that it even appears homogeneous and continuous 
on the smallest scale in the turbulent motion, then interaction of the flow with 
the continuous boundary could not materially influence the turbulence radiation 
efficiency (Powell 1960; Ffowcs Williams 1965). On the other hand this eventu- 
ality is unlikely since it requires that the flow Reynolds number based on aperture 
diameter be held smaller than unity, and if this is done the viscous layer, of thick- 
ness at  least equal to the hole radius divided by the root of the product of the 
Reynolds and Strouhal numbers, will be so thick as to fill the hole and impede 
the motion. That would tend to restore the rigid surface condition and destroy the 
absorption properties. The degree to which this happens would, however, have 
t o  be subject to experimental checks. Conversion of turbulent energy into sound 
therefore rests on small-scale details of the liner surface. The fibrous surfaces have 
a confused detailed geometry which defies deterministic analysis, so that model 
problems have to be based on the so-called ‘resonant cavity ’ type of surface, 
even though the resonant behaviour may be missing. These surfaces are per- 
forated screens backed by some dissipative layer, which we model here in the 
very specific way that is already described. 

Consider specifically the possibilities of sound production a t  the perforated 
screen irradiated by turbulence. There is an immediate dilemma. Should atten- 
tion be concentrated on the apertures through which the turbulence will be 
driving an unsteady monopole producing mass flow, or should one concentrate on 
the physical rigid sections of the boundaries which can only support fluctuations 
of force that induce a dipole scattered field (Curle 1955) ? Crudely speaking, since 
sound is scattered by the inhomogeneity one would emphasize the more obviously 
singular regions. For a sparsely perforated screen, each aperture is an obvious 
singularity and one would expect an efficient monopole radiation from the 
environment of each aperture. But when the holes are very wide, so that there is 
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more aperture than screen as it were, then the rigid sections are the obviously 
singular regions and a dipole scattered field would be expected. This viewpoint is 
essentially correct as the following analysis will show, but the scale on which the 
parameters are measured to determine degree of monopole and dipole behaviour 
must be derived from the details of that analysis and cannot be convincingly 
argued apriori. It transpires that even small holes appear large at  sufficiently low 
frequencies, for then the leakage through the screen in a period of oscillation can 
be very substantial even though the rate of leakage through a hole is small. 

It is already clear from the mere existence of these scattering source terms that 
sound can be generated rather efficiently by turbulence interacting with the 
screen. In  fact the efficiency with which turbulence energy is converted into 
sound can be increased by a factor equal to the fourth power of the ratio of sound 
speed to the root-mean-square turbulence velocity level. At low mean-flow Mach 
numbers ( M  < 1) this is a very substantial effect. 

The direct effect of the mean flow on radiation is ignored in this analysis, 
though no suggestion is made that these effects are small. In  fact the contrary is 
true, for it is anticipated that mean flow over a compliant boundary will have 
instabilities of the Kelvin-Helmholtz type (Benjamin 1963), which can obviously 
have dramatic effects on the acoustic properties of the surface layer (Miles 1956). 
These effects, however, enhance those considered here. 

FIGURE 1. Diagrammatic view of turbulence inducing a scattered radiation field from 
a perforated boundary. The holes are circular and all of radius a, there being N holes per 
unit area of surface. 

2. The acoustic properties of turbulence near a perforated rigid screen 
The model problem is illustrated in figures 1 and 2 together with the co-ordinate 

system. We seek a description of the sound radiated to large distances on the 
kurbulent side of the screen (z  > 0) at an angle 8 with the surface normal. The 
source region will be in the neighbourhood of the co-ordinate origin. The screen 
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is vanishingly thin and remains motionless under turbulent irradiation. It is 
perforated witih a homogeneous distribution of identical circular apertures of 
radius a, densely packed on the 'acoustic wavelength' scale so that an acoustic 
wave would be reflected from the screen as if it were some continuous homo- 
geneous boundary. The screen is surrounded on one side ( x  > 0) by locally turbu- 
lent fluid that asymptotes to an acoustic medium at rest with wave speed c at 
infinity, while the fluid is an ideal acoustic medium everywhere on the opposite 
side. 

Y 

/ I .. / Scaltered field 

FIGURE 2. Diagram of the model problem with the co-ordinate systems. 

According to Lighthill's (1952) acoustic analogy the field generated by turbu- 
lent flow in the vicinity of the perforated screen is given exactly as the solution to 
a quadrupole-driven wave equation subject to the boundary conditions of no 
velocity on the rigid sections of the screen and an outgoing wave condition ab 
infinity. We consider here a low Mach number flow where the source and sound 
fields exist on clearly separated length scales. The source of scale 1 generates 
sound at  scale ZIM. We will suppose that the scale 1 is not large in comparison 
with the typical distance (7~1\T)-* between perforations, N being the number area 
density of the circular apertures. On the other hand M is sufficiently small that 
there are many holes per acoustic wavelength, so that ZM-~(TN)* >> 1. 

The analysis will be conducted for the particular frequency w .  In the flow field 
this frequency is associated with a length scale 2vu'/o, u' being the root-mean- 
square turbulence level, and a radiation length scale 2rcIw. The radiated wave- 
number K = o / c  is small enough for the following inequality to hold: 

Ka < K(nN)-* < 1 
or , equivalently, 

a < ( T N ) - ~  < k/u' = 1M-l. 

Lighthill's (1952) analogy then allows us to determine the radiated sound 
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pressurep(x) at  the distant field point x by solving the inhomogeneous Helmholtz 
equation: 

(v2 + K 2 ) p  = T 13) 

subject to ail outgoing wave condition ati infinity and ap/az = 0 on the rigid 
sections of the screen. T is written symbolically for the turbulence-generated 
inhomogeneity . 

The required solution to this equation can be written down explicitly in terms 
of the Green's function for an infinite rigid boundary and the pressure gradient 
on the circular apertures Sn. 

where 

and y, is the centre of the nth aperture. 
Asymptotically, as 1x1 +oo, the radiation field of a supposedly finite source 

region becomes a centred spherical wave. That wave is given by the asymptotic 
form of (5) as 

P(X) - Pi@) +PAX) 

yo is the centre of a reference orifice near the co-ordinate origin and the suffix 1 
implies the co-ordinate in the screen surface along which the ray is moving 
towards the field point x at  an angular elevation 8 relative to the surface normal. 
The time dependence is taken to be e-iwt throughout. pi(x) is the pressure that 
would be radiated from the source distribution T if it were unbounded by the 
perforated screen and p,(x) is the reflexion of this sound in a uniform rigid screen 
so that pi(x)  +p,(x) is known trivially as the field of turbulence near the specu- 
larly reflecting solid surface at  z = 0 (Powell 1960). 

pi(y) exp [ - k ( y l  -yol) sin 81 d2y as Ix(-+oo. (8) 

Within an aperture in the screen surface z = 0 the pressure pi = p+. is undis- 
turbed from that in an unbounded field forced by the source distribution T. 
Equation (4) is then an integral equation from which ap/az is to be determined. 
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We now concentrate on a particular aperture Sn and rewrite (9) : 

The neglect of phase variation on the right-hand side of this equation is permitted 
since Ka < 1, and this step reduces the question of determining ap/az to Copson's 
(1947) problem of determining the charge distribution required on a disk to 
maintain a specified potential. We neglect the effect of small variations in 
pressure within an individual aperture so that the 'mass flux' through the 
aperture Sn is given by Copson's theorem as 

Since, in our problem, the distance between holes is assumed to be much 
greater than the hole dimension, i.e. a < (nN)-*, Iyn-cl can be set equal to 
I yn - ti], yn being the centre of the nth aperture and Ej the centre of the jtli 
aperture. Equation (7) then assumes a simpler form: 

From this we can estimate the scattered field described by the summation in 
equation (7).  

C exp [-Z'K(Yn1 - ~ o i )  sin61 Q(Y,) = 4a C ~ X P  E -  W Y n i  - Y O I ) ~ P ~ ( Y ~ )  
n n 

'(") . (13) 
2a - - 
n n j + n  

E: exp [ ~ K I  y, - - i ~ ( y , ~  - yol) sin 81 3 I Yn - 5j I 
The summation over n in the last term of this equation can be performed by 

integration since the function to be summed is a smooth slowly varying function 
of yn everywhere excepting the neighbourhood of the j th  hole. However, the 
contribution to the integral from the region surrounding that hole is smaller by 
a factor a(nN)* than the other terms in the equation and can be neglected, since 
this ratio is small. Accordingly 

= yjr/r Q(gj )  exp [ - i ~ ( &  - yol) sin 8 + i a ~ (  1 -sin 8 cos $)] d$ da (14) 
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We now introduce into the equations a specification of the property that at low 
Mach numbers the acoustic and hydrodynamic fields exist on clearly separated 
length scales. The acoustic field is slowly varying on the scale of the perforations 
in the screen so that the sum can be evaluated by integration. The hydrodynamic 
part is not slowly varying in general so that no simplification of the summation 
is possible for this component. 

We now decompose the pressure pi that would be incident on the position of 
the screen, z = 0, if the wave equation inhomogeneity were maintained at T but 
the screen discarded, into a slowly varying acoustic part p a  and a rapidly varying 
hydrodynamic part p h .  

Pi(Yn) = Po(Y%) +Ph(Yn), (17) 

This last step is permitted since by definition there is no element of p h  that exists 
on an ‘acoustic’ scale, and the surface integral is the Fourier transform operation 
that selects the ‘acoustic ’ part of the surface pressure field. 

The integral in (19) can be recognized as a term proportional to the pressure pr  
reflected from a homogeneous rigid boundary a t  z = 0. Use of (8) allows (18) to be 
re-expressed as 

Finally, by using this with (16), equation (7) becomes 

Evidently the perforated screen acts like a homogeneous boundary surface to 
acoustic waves with reflexion coefficient R given by the form taken by (21) in the 
absence of it hydrodynamic field. 
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In general, then, 

The second of these forms is given since it is suggestive of a physical interpretation 
of this final result. 

-&,(yn) is the monopole strength associated with mass flow through an 
infinitely baffled circular aperture centred a t  yn that is driven by an incident 
incompressible field ph(y ) .  This monopole is 'backed' by the screen, which has 
reflexion coefficient R to the acoustic wave. The monopole on the near-side 
of the screen therefore radiates a field ( - ei"/477r) Q(1+ R). On the other side of 
the screen the mass flowing through the aperture induces a monopole of strength 
+ Q which radiates through the screen, with transmission coefficient (1 - R), 
a field (ei"T/4nr) &( 1 - R).  The resulting field from each hole is consequently 

- 2RQ(eikrT/4nr), 

and this is the form of the scattered field according to (25). 
This suggests that the details of the equivalent monopoles at  the orifices might 

be calculated according to incompressible flow theory, ignoring any interaction 
of adjacent apertures. The radiation properties of these monopoles should then 
be calculated as if the porous screen were a homogeneous semi-transparent 
surface with reflexion coefficient given by ( 2 3 ) )  a value that implies a normal 
surface impedance Z equal to 

The real part of the surface impedance is constant at  pc/cosO, while the 
imaginary part is frequency- and geometry-dependent . Low frequency waves 
pass through the screen very easily with very little change, the effect of the 
screen being reduced if the apertures are either very numerous, N large, or of 
large radius. When the angle 8 is close to &i. and the sound ray is grazing the 
screen, then the solid portions become 'streamlines ' and cannot scatter the wave 
field. Then, as we see, the impedance is that of infinite fluid, pc/cosB, and the 
reflexion coefficient R goes to zero. 

The reflexion coefficient and impedance given in (23) and ( 2 6 )  respectively are 
fully consistent with those found for the same model problem by Hughes (1970) 
and Leppington & Levine (1971).  Hughes obtained his solutions by an iteration 
scheme restricted to small hole dimensions and non-grazing incidence angles. 
Leppington & Levine derive the precise asymptotic form for a screen with 
regularly arranged apertures. Their solution confirms that ( 2 3 )  and (26) give the 
leading terms in a low frequency expansion which is uniformly valid for all 
incidence angles. 

Limiting forms of the dependence of the sound field on the basic parameters 
are easily given. When the effective porosity is small, i.e. 

~uN/KcOS~ '  < 1, (27) 
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the quadrupole direct and reflected fields are supplemented by monopoles 
positioned at each aperture and radiating a scattered distant field of amplitude 

This field is independent of the radiation angle and of the number of holes per 
unit screen area, provided of course that the inequality ( 2 7 )  is met. The aperture- 
scattered field would then increase in direct proportion to the near-field pressure, 
giving a far-field intensity proportional to 

(29) 

4 a N / ~  cos 8 1, (30) 

p U3Ma2/ I x I 2. 

If the opposite inequality to (27) applies, i.e. 

then the screen is relatively acoustically transparent because either the screen is 
set as a near ‘streamline’ or it is of high porosity. 

The surface-scattered field is then that due to a system of aerodynamic dipoles 
radiating a pressure field of amplitude 

The field is now independent of the aperture size, providing again that the 
inequality (30) holds. In  aerodynamic flows K N Mil, so that the intensity of the 
distant; field scattered from the ‘transparent ’ screen is proportional to 

( p  U3M3/P I x 1 2 N2) GO82 8. (32) 

Both these limiting forms are physically interpretable. A screen of low porosity 
supports a monopole at  each aperture with the strength dependent only on the 
aperture geometry. On the other hand a screen of high porosity supports dipoles, 
on the solid sections, the strength of the dipoles being independent of the aperture 
geometry. A t  grazing incidence there is obviously no scattered field, the screen 
being parallel to the velocity in the sound ray. 

In  the absorbent liner screen R must be minimized for maximum absorption 
(which appears in this model problem as transmission), so that the inequality (30) 
is aimed for. The scattered hydrodynamic field is generated in this limit according 
to  (31), so that for this to be minimized at  the same time as the reflexion coefficient 
the hole number density N must be maximized. The most efficient lion-scattering 
porous screen is one with the maximum number of small holes per unit area. 

3. The acoustic properties of turbulence near a baffled array of pistons 
Suppose now that in each aperture of the previous problem there is a rigid 

piston which can move in the z direction with an average impedance 2,. On 
the Diston 

The geometry is precisely that of the previous section, so is the source field. 
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Equations (4) and ( 7 )  still describe the field, and (4) states that the pressure on 

This gives a force on the nth piston from which the 'mass flow' term Q can be 
computed via (33). 

The summation required in ( 7 )  can now be performed precisely as it 
(13 )  to give 

- X  &(Yn)ex~ [ - i ~ ( ~ n l - ~ o l ) ~ i n o l  
n 

Bilcapcnap,(y,) exp [ - ilc(ynl - yol) sin 191 
= (2, - [~/3nlilcapc) + (pcna2N/cos 0) ' 

so that 

(35) 

(36)  

was for 

(37)  

- - 2PC~a2NPAX)lrl+a, 
(2, - (8/3n) ilcapc) cos 8 +pcna2N 

(38)  
e x ~ [ i ~ l x -  ~n 1 I 4ilcapcnaph( y,) cos 6' 

-c 477 I x I [(Z, - (8 /3n)  ilcapc) cos 6 + pcna2N]* 

Equation ( 7 )  can now be expressed in its final form, which is written below in 
a manner that is again suggestive of the physical origin of the various terms: 

Here R is the surface reflexion coefficient associated with a homogeneous surface 
of impedance Z: 

' (41) 
2, - (8 /3n)  ilcapc 

na*N 
z= 

z cos e -pc  
z cos 8 + pc . R =  
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Q is given by (39 )  for the monopole strength at each piston and can be interpreted 
as follows. The pressure on a rigid baBe is twice the pressure in the free field. 
This pressure induces a motion of the piston which supplements the local pressure 
by an amount (8/37r)ipcKav. The pressure on the piston face which drives the 
piston impedance 2, is therefore 

Each piston moving with this velocity induces a monopole of strength 

i~apcna2p, ,  
2 , - ( 8 / 3 ~ ) i ~ a p c '  

Q = iKapcnav = ( 4 5 )  

These monopoles radiate and are reflected in the surface with reflexion coefficient 
R so that the scattered field from the pistons is 

This sum is in fact that in (38) - (40)  so that the physical origin of the scattered 
field is very clear. 

The effective impedance of the surface is seen to be an average of the surface 
impedance over an area containing several pistons, assuming the pressure is 
constant in space. 

J J piston 

The reflexion coefficient inevitably tends towards - 1 at grazing incidence, so 
that this finite impedance surface is quite different in behaviour from the 
perforated screen at near grazing angles. No field is scattered at  grazing incidence 
in this case in contrast to the monopole field scattered there by the porous screen. 

The scattered field is a system of aerodynamic dipoles with axis normal to the 
screen, centred at  the pistons in the limit 

pcna2N + [zo - (8/37r) i ~ p c l  cos 8, (48 )  

when the scattered field amplitude will be 

In  the other limit, 
12, - ( 8 / 3 n )  i ~ a p c j  COB 0 B pcnaZN, 

( 4 9 )  

(50) 

the scatterers are a system of aerodynamic monopoles and the scattered field 
amplitude is 
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The intensities of the monopole and dipole field will scale as usual on the fourth 
and sixth power of velocity respectively. 

The high frequency monopole limit in both perforated screen and ‘pistoned’ 
screen are very similar, with the number of apertures and nature of the piston 
impedance being completely irrelevant to  the field. The low frequency limits 
when the scattered field is dipole are, however, similar in the two problems only 
as long as 2, @ pc7ru2N. 

4. Conclusions 
The long-wavelength acoustic properties of a rigid screen perforated with small 

holes can be deduced from the known response to an incoming wave field of 
a single aperture in an infinite plane baffle. Acoustic transmission is the only 
‘absorption’ term, so that the real part of the surface impedance must be inde- 
pendent of screen geometry, or even of the existence of the screen, at  a value 
pclcos 6. The imaginary part is a mass term. The flux Q through unit screen area 
is N times 4up,, the flux through an individual aperture, so that the average 
velocity through the homogeneous screen is - 4upiN/iwp. 

However, the surface pressure on the almost rigid surface is approximately 2pi 
and the imaginary part of the surface impedance is therefore - ipck/2uN. The 
apparent surface mass per unit area is p/2aN. This argument is essentially Lord 
Rayleigh’s (1896, vol. 11, p. 180); he also points out that the conductance is 
a minimum for circular apertures. The imaginary part of the impedance is there- 
fore a maximum and could easily be reduced by making the apertures non- 
circular. This point is emphasized by Lamb (1925), who treats the analogous 
two-dimensional problem. 

The ability of the screen to scatter a small-scale turbulence pressure field into 
sound can be deduced in a similar manner. A hydrodynamic pressure field ph 
drives flow through each aperture to create there, on the ‘visible’ side, a mono- 
pole of strength - 4uph and a monopole of strength + 4aph that is only partly 
heard through the screen. If the screen is transparent to sound, then the two 
sources annihilate each other and a weaker dipole sound is scattered. The 
parameter determining the transparency of the screen is ~ u N / K  cos 8. When this 
parameter is small the screen is acoustically opaque and only the ‘visible’ mono- 
pole is heard. Sound is scattered very efficiently in this limit, the intensity of the 
omnidirectional scattered field increasing with the fourth power of the flow 
velocity. In the other limit, which is valid for larger or more numerous holes, or 
for lower frequencies or near grazing incidence, the screen is acoustically trans- 
parent. The weaker dipole scattered field then increases as the sixth power of the 
flow velocity with a directional peak normal to the screen surface. The most 
efficient non-scattering porous screen is one with the maximum number of holes 
per unit area. It is also likely to be composed of highly non-circular holes, a condi- 
tion Rayleigh showed necessary for the attainment of maximum acoustic 
transmission. 

The second model problem has very similar general characteristics, the only 
real difference arising from the fact that sound cannot propagate at grazing 
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incidence if the screen has finite piston impedance. The grazing incidence 
scattered sound is therefore of dipole type at  all conditions. 

As an order of magnitude of the maximum level that the scattered field can 
assume, consider monopole sound scattered from a turbulent boundary layer 
formed on an absorbent porous surface. The wall pressureph is likely to be 0.006 
of the mean flow dynamic head pU2 (at least it is on a smooth surface) so that the 
acoustic power scattered from unit surface area of turbulent boundary layer 
of the order 10-6a2NpU4c-1. 
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